50KB_TestPattern.txt

AminoSee DNA Render Summary

Hilbert curvers of dimension 3 used, yielding images with ~3.3 codons per pixel including non-coding regions. Linear reference file shows exactly 1 codons per pixel


1D Linear Map Image

2D Hilbert Map Image


MADE IN NEW ZEALAND
╔═╗┌┬┐┬┌┐┌┌─┐╔═╗┌─┐┌─┐  ╔╦╗╔╗╔╔═╗  ╦  ╦┬┌─┐┬ ┬┌─┐┬─┐
╠═╣││││││││ │╚═╗├┤ ├┤    ║║║║║╠═╣  ╚╗╔╝│├┤ │││├┤ ├┬┘
╩ ╩┴ ┴┴┘└┘└─┘╚═╝└─┘└─┘  ═╩╝╝╚╝╩ ╩   ╚╝ ┴└─┘└┴┘└─┘┴└─
by Tom Atkinson            aminosee.funk.nz
ah-mee no-see       "I See It Now != I AminoSee it!"


Amino Acid Hue° RGB Count Description Hilbert PNG
0. Reference

255,128,128

13,617 Composite of all amino acids 50KB_TestPattern Reference
1. Histidine

329°

255,128,193

274 Group IV: Basic amino acids 50KB_TestPattern Histidine
2. Glutamic acid

16°

255,162,128

274 Group III: Acidic amino acids 50KB_TestPattern Glutamic acid
3. Aspartic acid

31°

255,193,128

274 Group III: Acidic amino acids 50KB_TestPattern Aspartic acid
4. Lysine

313°

255,128,227

274 Group IV: Basic amino acids 50KB_TestPattern Lysine
5. Cysteine

63°

249,255,128

274 Group II: Polar, uncharged amino acids 50KB_TestPattern Cysteine
6. Glycine

78°

217,255,128

548 Group I: Nonpolar amino acids 50KB_TestPattern Glycine
7. Alanine

94°

183,255,128

548 Group I: Nonpolar amino acids 50KB_TestPattern Alanine
8. Valine

125°

128,255,138

548 Group I: Nonpolar amino acids 50KB_TestPattern Valine
9. Leucine

141°

128,255,172

959 Group I: Nonpolar amino acids 50KB_TestPattern Leucine
10. Isoleucine

157°

128,255,206

411 Group I: Nonpolar amino acids 50KB_TestPattern Isoleucine
11. Phenylalanine

172°

128,255,238

274 Group I: Nonpolar amino acids 50KB_TestPattern Phenylalanine
12. Tryptophan

188°

128,238,255

137 Group I: Nonpolar amino acids 50KB_TestPattern Tryptophan
13. Serine

203°

128,206,255

822 Group II: Polar, uncharged amino acids 50KB_TestPattern Serine
14. Threonine

219°

128,172,255

548 Group II: Polar, uncharged amino acids 50KB_TestPattern Threonine
15. Glutamine

250°

149,128,255

274 Group II: Polar, uncharged amino acids 50KB_TestPattern Glutamine
16. Asparagine

266°

183,128,255

274 Group II: Polar, uncharged amino acids 50KB_TestPattern Asparagine
17. Tyrosine

282°

217,128,255

274 Group II: Polar, uncharged amino acids 50KB_TestPattern Tyrosine
18. Arginine

297°

249,128,255

822 Group IV: Basic amino acids 50KB_TestPattern Arginine
19. Proline

344°

255,128,162

548 Group I: Nonpolar amino acids 50KB_TestPattern Proline
20. Methionine

110°

149,255,128

1,385 START Codon 50KB_TestPattern Methionine
21. Ochre

255,128,128

1,401 STOP Codon 50KB_TestPattern Ochre
22. Amber

47°

255,227,128

777 STOP Codon 50KB_TestPattern Amber
23. Opal

240°

128,128,255

1,697 STOP Codon 50KB_TestPattern Opal
19 Amino Acids, 4 Start/Stop codes, 1 NNN . . . .

Render Summary

				[object Object]
				

AminoSeeNoEvil

DNA/RNA Chromosome Viewer

A new way to view DNA that attributes a colour hue to each Amino acid codon



Hilbert Projection

This is a curve that touches each pixel exactly once, without crossing over or breaking.

Linear Projection

The following image is in raster order, top left to bottom right:

About Start and Stop Codons

The codon AUG is called the START codon as it the first codon in the transcribed mRNA that undergoes translation. AUG is the most common START codon and it codes for the amino acid methionine (Met) in eukaryotes and formyl methionine (fMet) in prokaryotes. During protein synthesis, the tRNA recognizes the START codon AUG with the help of some initiation factors and starts translation of mRNA. Some alternative START codons are found in both eukaryotes and prokaryotes. Alternate codons usually code for amino acids other than methionine, but when they act as START codons they code for Met due to the use of a separate initiator tRNA. Non-AUG START codons are rarely found in eukaryotic genomes. Apart from the usual Met codon, mammalian cells can also START translation with the amino acid leucine with the help of a leucyl-tRNA decoding the CUG codon. Mitochondrial genomes use AUA and AUU in humans and GUG and UUG in prokaryotes as alternate START codons. In prokaryotes, E. coli is found to use AUG 83%, GUG 14%, and UUG 3% as START codons. The lacA and lacI coding this.regions in the E coli lac operon don’t have AUG START codon and instead use UUG and GUG as initiation codons respectively.